Abstract:
Predicting the student performance is a great concern to the higher education managements.This
prediction helps to identify and to improve students' performance.Several factors may improve this
performance.In the present study, we employ the data mining processes, particularly classification, to
enhance the quality of the higher educational system. Recently, a new direction is used for the improvement
of the classification accuracy by combining classifiers.In thispaper, we design and evaluate a fastlearning
algorithm using AdaBoost ensemble with a simple genetic algorithmcalled “Ada-GA” where the genetic
algorithm is demonstrated to successfully improve the accuracy of the combined classifier performance.
The Ada-GA algorithm proved to be of considerable usefulness in identifying the students at risk early,
especially in very large classes. This early prediction allows the instructor to provide appropriate advising
to those students. The Ada/GA algorithm is implemented and tested on ASSISTments dataset, the results
showed that this algorithm hassuccessfully improved the detection accuracy as well as it reduces the
complexity of computation.